

Proyecto CRIS de Células Inmunitarias Nano-guiadas para Tumores Sólidos Pediátricos: Unidad CRIS de Terapias Avanzadas para Cáncer Infantil

Investigadores Principales: Dra. Lucía Fernández, Dr. Antonio Pérez.

Centro: Hospital Universitario La Paz, Madrid - Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid.

Introducción

Los tumores sólidos en pediatría, como glioblastomas, sarcomas y neuroblastomas, presentan un ambiente que rodea al tumor denso e irregular de vasos sanguíneos que **impiden la llegada eficiente de células inmunitarias** e incluso las terapias para luchar contra el tumor. A diferencia de los cánceres hematológicos (de la sangre), donde terapias celulares como las CAR-T circulan libremente, en tejidos sólidos estos linfocitos, modificados para reconocer y atacar el cáncer, se dispersan por el organismo y **pierden eficacia**. Además, el tejido tumoral crea barreras físicas y libera señales que apagan la respuesta antitumoral. Para superar estos obstáculos, los investigadores han ideado una estrategia muy original: las **nanopartículas magnéticas** (MNP). Al unirlas a las células CAR-T, es posible aplicar un campo magnético que **concentre las terapias en el lugar del tumor**. Este enfoque, además, promete **reducir la dosis** necesaria y **minimizar efectos negativos** en tejidos sanos, abriendo nuevas vías para tratamientos más precisos y seguros.

El proyecto

Este proyecto combina **terapias CAR T con un sistema de entrega teledirigida** mediante nanopartículas magnéticas, seguras para usarlas en medicina y que representan una estrategia innovadora de dirigir terapias hacia el lugar donde se desarrolla el tumor.

Para ello, se desarrollan **modelos 3D** que reproducen la arquitectura y el ambiente tumoral, para evaluar de forma realista la penetración y retención de estas células guiadas. Además, los investigadores deben optimizar la síntesis de estas nanopartículas, así como su viabilidad y su impacto en la funcionalidad de estas terapias CAR-T, con el fin de asegurar que no interfieren negativamente en la acción de estos tratamientos.

Avances recientes

Durante el tiempo de desarrollo del proyecto, se ha logrado optimizar la producción de las nanopartículas y actualmente, los investigadores consiguen **fabricarlas en minutos** y hacerlo de forma que pueden usarse con seguridad en los pacientes, gracias a las instalaciones de la **Sala Blanca de la Unidad CRIS.**

Además, en ensayos de laboratorio, se ha demostrado que, estas nanopartículas no solo no interfieren con la funcionalidad de las CAR-T, sino que la **potencian**, favoreciendo su acción contra los tumores, a la vez que aumentan su **supervivencia**.

Asimismo, con el fin de estudiar esta estrategia en un sistema parecido a lo que ocurriría en el organismo, se ha desarrollado un **modelo tridimensional de glioblastoma**, que sirve como plataforma para futuras pruebas de guiado magnético.

Estos hitos consolidan la base técnica y biológica para avanzar hacia ensayos de CAR-T nano-guiadas, acortando la brecha entre innovación y aplicación clínica en tumores sólidos pediátricos.