

Proyecto CRIS de Origen del Cáncer de Páncreas: Programa de Excelencia 2023

Investigador Principal: Dra. Meritxell Rovira
Centro: Universitat de Barcelona - Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat

Introducción

El cáncer de páncreas, (especialmente el adenocarcinoma ductal de páncreas, o PDAC), sigue siendo uno de los tumores con peor pronóstico. Por la dificultad de diagnosticarlo de manera temprana, la mayoría de las ocasiones se detecta cuando ya está muy avanzado o se ha extendido. Esto lleva a que solamente un 8% de los pacientes sobreviva 5 años tras el diagnóstico.

Uno de los mayores problemas que tienen estos tumores es la dificultad de detectarlo de manera temprana, en sus fases iniciales. Pero no es algo fácil de hacer. Cada órgano del organismo está compuesto de muchos tipos de células diferentes. En el caso del cáncer de páncreas proviene de dos tipos de células (llamadas acinares y ductales) pero dentro de ellas hay mucha variedad y no sabemos cómo todo esto afecta a la formación del tumor.

Durante los últimos años se han desarrollado varios estudios que parecen indicar que según qué tipo de célula

del páncreas sea la que inicia el tumor, éste puede ser más o menos agresivo y responder mejor o peor a tratamientos como la quimioterapia.

Esto abre la puerta a intentar comprender mejor cómo se inician estos tumores, pero, sobre todo, cómo anticiparse a ellos.

El proyecto

La Dra. Meritxell Rovira es una experta en el estudio del origen del cáncer de páncreas. Durante años ha acumulado información molecular profunda de más de 22.000 células ductales individuales de páncreas, lo que le ha facilitado encontrar muchos grupos de células diferentes, algunas de las cuales podrían estar implicadas en provocar las formas más graves de cáncer de páncreas.

En un extenso y profundo trabajo, la Dra. Rovira planea crear nuevos modelos de laboratorio para simular diferentes tipos de cáncer de páncreas, originados desde diferentes tipos de célula, para ver cuáles son más o menos agresivos. Luego, estudiará estos tumores a nivel molecular, para comprender su evolución y funcionamiento.

Finalmente utilizará todo el conocimiento adquirido para deducir cómo detectar estos tumores en las fases iniciales, e incluso buscar posibles puntos débiles contra ellos.

Por lo tanto, este proyecto podría proporcionar información vital para diagnosticar de manera temprana (incluso a partir de muestras de sangre) el cáncer de páncreas, e incluso determinar nuevas posibles maneras de tratarlo.

Avances recientes

El proyecto de la Dra. Rovira avanza de manera firme, potenciado por una serie de colaboraciones que han establecido con centros de referencia, como el Instituto de Oncología Vall d'Hebron (VHIO), el Instituto de Investigaciones Médicas del Hospital del Mar (IMIM), el Hospital Universitario de Bellvitge o el CNIO en Madrid. Además, el laboratorio ha crecido hasta contar con un equipo de 11 personas, enfocadas en la investigación contra el cáncer.

Con este ecosistema, han logrado obtener una gran cantidad de muestras de pacientes de cáncer, para generar organoides (cultivos de tumores complejos en 3 dimensiones), y estudiar el origen del cáncer de

páncreas en el laboratorio. Están creando, de esta forma, un biobanco de diferentes pacientes, con diversos tratamientos, y diversos subtipos de cáncer de páncreas que servirá como una especie de biblioteca de tumores para estudiarlos en función de sus características: búsqueda de puntos débiles, tests de medicamentos, etc.

Además, han logrado establecer modelos animales que representan muy bien cómo se produce el cáncer de páncreas en humanos, al provocarlo cuando los animales ya son adultos, y a través de alteraciones genéticas como las que tienen lugar en los pacientes (en genes clave, como KRAS o p53). Es decir, han desarrollado un modelo que permite estudiar de forma mucho más realista el inicio del cáncer de páncreas, a diferencia de otros que se han utilizado previamente.

Para estos análisis, el equipo de investigadores ha desarrollado un método para marcar las células cuando se vuelven tumorales y así se puede trazar el origen de las diferentes poblaciones celulares que formar el tumor. Además, están trabajando en modelos que simulan una inflamación del páncreas (pancreatitis), fenómeno que favorece la aparición de este tipo de cáncer, de manera similar a lo que ocurre en humanos.

De manera sorprendente, algunos modelos animales han desarrollado tumores en una zona específica del páncreas, denominada ámpula. Este tipo de tumores en humanos son muy raros y agresivos, con un 70% de mortalidad. Actualmente, se encuentran analizando estos animales, pues podría tratarse de los primeros modelos que permitan estudiar este tipo de tumor, que tiene muy pocas opciones actualmente.

Con todo este material de trabajo, la Dra. Rovira y su equipo está analizando las diferencias entre los tejidos tumorales (tanto en los modelos animales, como en muestras humanas) y tejidos de donantes sanos, estudiando la mayor cantidad posible de información biológica (ADN, proteínas, células inmunitarias, moléculas implicadas en la comunicación del tumor con el ambiente, etc).

Esta enorme cantidad de información está permitiendo a la Dra. Rovira y su equipo buscar mejor factores que desencadenen o empeoren el cáncer de páncreas, con el fin de bloquearlos o inhibirlos y así modificar el destino de esas células que se acabarían convirtiendo en tumorales. Además, están caracterizando cómo se inician los diferentes subtipos de cáncer de páncreas, según el tejido o tipo de célula de origen. Un ejemplo es el cáncer de páncreas de células basales, uno de los más agresivos en la actualidad.

Todo el trabajo de la Dra. Rovira, está generando una gran cantidad de conocimiento enormemente valioso, así como modelos de estudio que permitirán esclarecer muchas de las incógnitas que rodea a uno de los tipos de cáncer más preocupante hoy día, a la vez que allanan el camino hacia nuevas maneras de tratarlo.