

Skeletal late effects – FIGHT KIDS CANCER

Investigador: Dr. Phillip Newton
Centro: Karolinska Institutet, Solna, Suecia
Investigadores Colaboradores:
Dra. Marie-Catherine Vozenin (Lausanne University Hospital, Lausanne, Suiza)
Dr. Klas Blomgren (Karolinska Institutet, Solna, Suecia).

Introducción

Cada año, miles de niños en todo el mundo son diagnosticados de cáncer. Gracias a los avances terapéuticos, la supervivencia ha aumentado de forma extraordinaria: más del 80 % de los pacientes pediátricos supera la enfermedad. Sin embargo, la historia no termina ahí. Las terapias que curan pueden dejar secuelas a largo plazo que afectan al crecimiento, la fertilidad, la función cognitiva o la salud ósea.

Entre ellas, **los efectos tardíos esqueléticos** representan una de las complicaciones más preocupantes. El hueso en crecimiento es un tejido dinámico, muy sensible a la radiación. Cuando un niño recibe radioterapia, sobre todo en regiones que incluyen la columna, la pelvis o las extremidades, el tratamiento puede alterar la formación ósea, afectando al crecimiento. Las consecuencias pueden aparecer años después: deformidades, fracturas, escoliosis o un aumento del riesgo de osteoporosis precoz.

Pese a su importancia clínica, los mecanismos biológicos que explican estos efectos siguen sin entenderse del todo, y no existen estrategias eficaces para prevenirlos o revertirlos. De ahí surge el proyecto **Skeletal Late Effects**, que busca llenar este vacío de conocimiento y sentar las bases para una medicina más preventiva y personalizada en los supervivientes de cáncer infantil.

El proyecto

El equipo investigador parte de una pregunta clave: ¿Cómo afecta la radiación al microambiente del hueso en crecimiento, y qué procesos moleculares determinan los daños a largo plazo?

Para responderla, el consorcio combina un enfoque traslacional y multidisciplinar, que integra modelos preclínicos, análisis de imagen y estudios moleculares de tejido óseo irradiado.

1. Modelos animales de radiación localizada

Se utilizan modelos experimentales en los que se expone una zona concreta del esqueleto en crecimiento (por ejemplo, una extremidad) a dosis de radiación equivalentes a las que reciben los niños durante la radioterapia. Esto permite observar cómo se altera la arquitectura ósea, la vascularización y la actividad de las células que generan las estructuras óseas.

2. Análisis de tejido y moleculares

Los investigadores estudian los cambios en la expresión de genes y proteínas relacionados con la remodelación ósea, la inflamación y la fibrosis. Estos análisis permiten identificar rutas biológicas implicadas en la respuesta al daño y potenciales **puntos débiles** para proteger o regenerar el hueso irradiado.

3. Estudios de imagen avanzada

Se aplican técnicas como resonancia magnética para evaluar el crecimiento óseo, la densidad mineral y la deformación estructural en tres dimensiones, tanto en modelos preclínicos como en pacientes pediátricos.

4. Aplicación clínica y prevención

El objetivo último es trasladar estos hallazgos a la práctica médica, mejorando el seguimiento y la rehabilitación de los niños que han recibido radioterapia. El proyecto busca identificar **señales tempranas de daño óseo** y explorar posibles intervenciones farmacológicas o físicas que puedan mitigar los efectos de la radiación.

Este trabajo no solo aspira a comprender un problema clínico complejo, sino a **transformar el cuidado de los supervivientes de cáncer infantil**. Sus resultados podrían permitir ajustar las dosis de radiación de forma más segura, diseñar terapias protectoras y establecer protocolos de seguimiento más precisos, evitando que las secuelas óseas limiten la vida adulta de estos pacientes.

En definitiva, **Skeletal Late Effects** representa un paso esencial hacia una oncología pediátrica que no solo cure el cáncer, sino que preserve la salud y la calidad de vida a largo plazo de quienes lo han superado.