

BioESMART -IGF-1R/HER3 - FIGHT KIDS CANCER

Investigador: Dr Jordane Chaix
Centro: Centre Hospitalier Universitaire (CHU) de Bordeaux, France
Investigadores Colaboradores: Dra. Birgit Geoerger, Dr. Pablo Berlanga (Institute Gustave Roussy, Paris, France)
Dr. Olivier Delattre, Dra. Gaelle Pierron (Institut Curie, Paris, France)
Dr. Raphael Morscher, Dra. Sarah Cherkaoui (University Children's Hospital Zurich, Switzerland).

Introducción

A pesar de los avances en oncología pediátrica, ciertos tipos de cáncer infantil como el sarcoma de Ewing siguen presentando mal pronóstico en casos de recaída o resistencia a tratamientos estándar. En los últimos años, se ha explorado una vía prometedora: bloquear proteínas clave en el crecimiento tumoral, como IGF-1R (receptor del factor de crecimiento tipo insulina 1) y HER3 (receptor del factor de crecimiento epidérmico tipo 3), que actúan como motores moleculares del cáncer.

Durante la década de 2010, algunos ensayos clínicos con terapias dirigidas contra IGF-1R mostraron respuestas clínicas prometedoras, especialmente en sarcomas. Sin embargo, la falta de biomarcadores fiables para identificar a los pacientes que realmente puedan beneficiarse de estas terapias ha frenado su desarrollo.

Ahora, el equipo liderado desde el CHU de Burdeos propone reabrir esta vía terapéutica con una estrategia mejorada: el uso de un anticuerpo bispecífico llamado **Istiratumab (MM-141)**, capaz de bloquear simultáneamente IGF-1R y HER3. Este enfoque doble busca evitar mecanismos de resistencia y ampliar la eficacia del tratamiento. El proyecto, llamado **BioESMART**, combinará esta nueva terapia con un ambicioso programa de investigación molecular para descubrir señales moleculares que indiquen que la terapia está funcionando.

El proyecto

Istiratumab ha demostrado actividad en modelos celulares y animales de sarcoma de Ewing, y ahora se evaluará en pacientes dentro del ensayo clínico europeo ESMART, que incluye a menores con tumores raros y de alta complejidad.

El proyecto BioESMART acompaña esta parte clínica con un ambicioso programa de investigación traslacional que busca identificar biomarcadores (señales moleculares) que ayuden a seleccionar mejor a los pacientes candidatos al tratamiento. Para ello, se combinarán tecnologías de última generación e incluso análisis de célula individual en muestras tumorales y de sangre. En paralelo, se analizarán datos ya disponibles de cientos de pacientes con cáncer pediátrico, para intentar comprender qué factores moleculares se asociaron a una buena o mala respuesta a este tratamiento.

El estudio está liderado por el Dr. Jordane Chaix desde el Hospital Universitario de Burdeos, en colaboración con centros de referencia como Gustave Roussy, el Institut Curie y el Hospital Infantil de Zúrich, entre otros. Es un ejemplo excelente de colaboración europea multidisciplinar que une oncología pediátrica, investigación clínica y ciencia básica aplicada al desarrollo de terapias dirigidas.

En última instancia, BioESMART aspira no solo a confirmar la utilidad clínica de Istiratumab, sino también a avanzar hacia una medicina de precisión en sarcomas infantiles. Identificar con mayor precisión a los pacientes que pueden beneficiarse de terapias dirigidas permitirá ahorrar toxicidades innecesarias y mejorar las tasas de supervivencia en un grupo de pacientes que actualmente tiene pocas opciones terapéuticas. Además, los resultados del estudio podrán sentar las bases para nuevas combinaciones terapéuticas que aborden los mecanismos de resistencia al tratamiento y amplíen su eficacia. Este proyecto representa una segunda oportunidad para una estrategia que, ahora, gracias al conocimiento acumulado y a la tecnología disponible, podría dar el paso definitivo hacia su consolidación.